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Introduction

I Little work has been done to solve fractional differential equations
numerically with spectral methods.

I Almost always treated with low order finite difference method.
I Dealing with the boundary is not always trivial.
I We would like to be able to deal with obstacle and non-periodic

domain.
I We want a high-order scheme without too much programming

effort (prefferably a spectral method).
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Consideration

For this presentation we will :

I use the Liouville definition with c = −∞ at the lower bound,
I limit ourselves to sufficiently good functions,
I limit ourselves to real order fractional operators.
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Liouville fractional integral

Definition (Liouville integral)
Let ν > 0. We define the Liouville fractional integral of order ν of f (t)
as :

−∞Jν
t [f (t)] :=

1
Γ(ν)

∫ t

−∞
(t − τ)ν−1f (τ) dτ (1)

If ν = 0,
−∞J0t [f (t)] := I[f (t)] = f (t) (2)
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Liouville fractional derivative

Definition (Liouville derivative)
Let µ > 0. We define the Liouville fractional derivative of order µ of f (t)
as :

−∞Dµ
t [f (t)] =

dm

dtm
[
−∞Jν

t [f (t)]
]

=
1

Γ(ν)

dm

dtm

[∫ t

−∞
(t − τ)ν−1f (τ) dτ

] (3)

where ν = m − µ and m = bµc+ 1.
If ν = 0,

−∞D0
t [f (t)] := I[f (t)] = f (t) (4)
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Some remarks

Let −∞Dα
t [f (t)] be a Liouville fractional operator (derivative or

integral). Then :

I If α = n ∈ Z we obtain the usual definition of the derivative and
integral (as expected !).

I If α = 0 we obtain the identity operator I.
I If f (t) is sufficiently good, the integral operator commute and is

associative (semi-group property).
I We have a result similar to the fundamental theorem of calculus : If
µ > 0 and f (t) is sufficiently good :

−∞Dµ
t
[
−∞Jµ

t [f (t)]
]

= I[f (t)] = f (t)

The order is important ! The Liouville fractional derivative is a left
inverse (in general).
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Fourier transform of fractional derivative

Theorem
Let F be the Fourier transform operator. Then, for a sufficiently good
function, we have :
for 0 < ν < 1,

(F [−∞Jν
t [f (t)]])(κ) =

(F [f (t)])(κ)

(−iκ)ν

and, for µ > 0,

(F [−∞Dµ
t [f (t)]])(κ) = (−iκ)µ(F [f (t)])(κ)
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Fourier transform of fractional derivative

Good news everyones ! We can use Fourier pseudo-spectral method in
our problem.
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Idea

I We want to extend the physical domain to a periodic one.

I Add a penalty term to control the solution outside of the physical
domain.

I Problem with regularity on the original boundary.
I Drastically lower the convergence order of the spectral method.
I Low order in function of the penalty parameter.
I Boundary layer gives low order of convergence in space.
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Penalty method

Let’s consider the problem :

∂tu = ∂xxu in Ωp

u = g on Γp

where Ωp is the physical domain and Γp is the boundary.

In the original penalty method we extend our domain to a periodic one
by adding a viscous term :

∂tuη = ∂xxuη − η−1χsuη in Ω

where η is a small penalty parameter and χs is the indicator function of
the domain extension Ωs
We only have uη → u with O(

√
η) and in the boundary layer O(∆x).
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Improved penalty method

We modify the penalty term by adding an extension function g̃ to
reduce the boundary layer at the vignicity of Γp.

The problem becomes :

∂tuη = ∂xxuη − η−1χs(uη − g̃) in Ω

Here, g̃ should be a continuous extension of the boundary condition on
Γp. The more derivatives it matches the better.
We used Hermite interpolation to extend the boundary.
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Fractional heat equation

We shall consider the fractional heat equation with 1 < α ≤ 2 :

∂tu(x , t) = −∞Dα
x [u(x , t)] + f (x , t) in [0, 2π]

f (x , t) = − cos(t) sin(x + πα/2)− sin(t) sin(x)

u(x , 0) = sin(x)

u(0, t) = u(2π, t)

The exact solution is u(x , t) = cos(t) sin(x)

For 5 ≤ n ≤ 10 we will pose : N = 2n, h = 2π
N , ∆t = 0.1h2 and

η = 5∆t. We will integrate to a final time T = 1.
Also, we will do all tests for 0,1, 2 derivatives matched at the boundaries
during the Hermite interpolation.
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Fractional heat equation

I We discretize ut with a simple Euler scheme :

un+1
t =

un+1 − un

∆t

I The Fourier spectral method is not of exponential order if we have
discontinuities.

I To allow high order of convergence with our spectral method we
smoothed out the indicator function.

I It is also important to have smooth initial conditions. We used
Hermite interpolation to to achieve this.
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Fractional heat equation ν = 1.5

For this problem, we will consider an obstacle in the region
Ωs = [π − 0.7, π + 0.7]
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0.8

1
Solution at T = 1 for alpha = 1.5

 

 
U Exact
g tilt
U

Figure : Solution for the fractional heat equation of order ν = 1.5 with H2
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Fractional heat equation ν = 1.5
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Figure : Loglog plot of the error versus H for the fractional heat equation of
order ν = 1.5

C0 C1 C2

Order 1.45 2.71 3.01
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Fractional heat equation ν = 1.5
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Non-periodic fractional heat equation ν = 1.5

For this problem, we will consider an obstacle in the region
Ωs = [2π − π

2 , 2π]
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Figure : Solution for the non-periodic fractional heat equation of order ν = 1.5
with H2
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Non-periodic fractional heat equation ν = 1.5
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Non-periodic fractional heat equation ν = 1.5
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Concluding remark

I As we can see, the improved penalty method works very well for
solving the FDE.

I Clearly, the next step would be to test it in higher dimension.
I It would be interesting to try other pseudo-spectral methods for

various definitions of a fractional operator.
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