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Fig. 1. Our novel Monte Carlo fluid simulator supports 2D and full 3D simulations of viscous incompressible flows by computing pointwise stochastic solutions
of the vorticity transport equation. It is easy to implement and treats diverse fluid effects, such as leapfrogging vortex rings (left) and colliding jets (middle).
The adoption of a Monte Carlo method to handle boundaries is well-suited to treating nontrivial boundary geometry (right).

We present a novel Monte Carlo-based fluid simulation approach capable

of pointwise and stochastic estimation of fluid motion. Drawing on the

Feynman-Kac representation of the vorticity transport equation, we propose

a recursive Monte Carlo estimator of the Biot-Savart law and extend it with

a stream function formulation that allows us to treat free-slip boundary

conditions using a Walk-on-Spheres algorithm. Inspired by the Monte Carlo

literature in rendering, we design and compare variance reduction schemes

suited to a fluid simulation context for the first time, show its applicability to

complex boundary settings, and detail a simple and practical implementation

with temporal grid caching. We validate the correctness of our approach

via quantitative and qualitative evaluations – across a range of settings and

domain geometries – and thoroughly explore its parameters’ design space.

Finally, we provide an in-depth discussion of several axes of future work

building on this new numerical simulation modality.

∗
Authors with equal contribution.

Authors’ addresses: Damien Rioux-Lavoie, McGill University and Ubisoft Montreal,

Canada, riouxld21@gmail.com; Ryusuke Sugimoto, University of Waterloo, Canada,

rsugimot@uwaterloo.ca; Tümay Özdemir, University of Waterloo, Canada, tozdemir@

uwaterloo.ca; Naoharu H. Shimada, Osaka University, Japan, NHShimada93@gmail.

com; Christopher Batty, University of Waterloo, Canada, c2batty@uwaterloo.ca; Derek

Nowrouzezahrai, McGill University, Canada, derek@cim.mcgill.ca; Toshiya Hachisuka,

University of Waterloo, Canada, thachisu@uwaterloo.ca.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2022/12-ART240 $15.00

https://doi.org/10.1145/3550454.3555450

CCSConcepts: •Mathematics of computing→Probabilistic algorithms;
Partial differential equations; • Computing methodologies→ Mod-
eling and simulation.

Additional Key Words and Phrases: Computational Fluid Dynamics, Monte

Carlo Integration, Stochastic Processes, Walk-on-Spheres Algorithm

ACM Reference Format:
Damien Rioux-Lavoie, Ryusuke Sugimoto, Tümay Özdemir, Naoharu H.

Shimada, Christopher Batty, Derek Nowrouzezahrai, and Toshiya Hachisuka.

2022. A Monte Carlo Method for Fluid Simulation. ACM Trans. Graph. 41,
6, Article 240 (December 2022), 16 pages. https://doi.org/10.1145/3550454.

3555450

1 INTRODUCTION
Monte Carlo (MC) methods have been successfully applied to a

diversity of problems in, e.g., statistical inference, simulation and

integration [Metropolis and Ulam 1949]. In graphics, MC has been

used most extensively in physically-based light transport where

it outpaced traditional finite element methods to treat challeng-

ing radiometric effects with increasingly complex geometric and

reflectance models [Kajiya 1986; Pharr et al. 2018]. Recent appli-

cations of MC to problems in geometry processing [Sawhney and

Crane 2020] further evidence its broader applicability in graphics.

Motivated by this growing adoption, we adapt and demonstrate

the utility of MC methods in computational fluid dynamics. We

present a new MC approach to generate fluid motions with a point-

wise stochastic formulation of solutions to the incompressible Navier-

Stokes equations. We leverage a reinterpretation of the deterministic

fluid equations as a stochastic process, introducing Monte Carlo

integral estimators of the Biot-Savart law that relate fluid vorticity
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and velocity fields. This reformulation allows us to define a recur-

sive fluid flow model with striking similarities to simulation and

sampling strategies employed in MC rendering.

Concretely, we first devise a recursive numerical integration

scheme to solve 2D incompressible Euler equations on open and peri-

odic domains. Next, we develop a stream function-based strategy to

enforce free-slip boundary conditions for static or moving obstacles,

leading to a Poisson equation that we solve stochastically via Walk-

on-Spheres [Muller 1956]. Our solver does not perform any global

solve or boundary discretization, enabling a point-wise estimation

and treatment of complex boundaries. Our stream function-based

approach also allows for the treatment of inflow and outflow con-

ditions on the domain boundary. Lastly, we generalize the method

to 3D Navier-Stokes equations (i.e., accounting for viscosity and

stretching) using the Feynman-Kac formula that expresses partial

differential equation (PDE) solutions as an expectation of a stochas-

tic process, for which we compute with MC.

In its simplest form, our recursive formulation (Fig. 2) exhibits

exponential computation complexity (Fig. 3) – akin to how dis-

tribution ray tracing scales for the number of light bounces. We

overcome this problem with a practical uniform grid-based cache.

Our caching scheme further allows us to develop and apply MC

variance reduction techniques, including importance sampling of

the vorticity field, and a control variate approach that utilizes the

vorticity and velocity fields from the previous time step, to increase

sample efficiency and accelerate stochastic estimates.

We validate our method against standard grid- and particle-based

solvers, exploring and summarizing its behavior under different

boundary conditions and parameter settings. The pointwise nature

of our method allows an easy parallelization of computation. Our

work is the first foray in the space of MC methods applied to fluid

simulation in graphics and, in addition to highlighting the current

limitations of our proof-of-concept simulators, we outline and dis-

cuss a series of open problems associated to scaling MC-based fluid

simulators to larger and more challenging flows.

Concisely, our contributions are:

• a novel MC fluid solver using recursive, pointwise probabilistic

solutions to the 2D Euler equations based on the Biot-Savart law,

• a walk-on-spheres treatment of inflow, outflow, and free slip solid

boundary conditions using stream functions,

• a generalized MC solver for the full 3D incompressible Navier-

Stokes equations based on the Feynman-Kac PDE formulation,

• a practical, non-recursive cache-based solver,

• applications of MC variance reduction to fluid simulation, and

• a roadmap of open challenges for scalable MC fluid simulation.

2 BACKGROUND
We review the most relevant work in fluid simulation and MC ren-

dering in computer graphics. We refer readers to comprehensive

textbook sources by Bridson [2015] and Pharr et al. [2018] for more

details.

Monte Carlo rendering. A pioneering application of MC integra-

tion to light transport followed the formalization of the now foun-

dational rendering equation [Cook 1986; Kajiya 1986], leading to the

basic path tracing algorithm. At the time, finite element radiosity

approaches [Goral et al. 1984] were the de facto scheme for solving

radiative transport problems in rendering. Since then, MC-based

path tracing and its variants have evolved to treat more complex

radiometric effects, all while scaling more gracefully with the grow-

ing complexity of virtual environments [Pharr et al. 2018]. Today,

modern industrial-calibre renderers use path tracing [Pharr 2018]

and specialized variance reduction strategies to improve sample the

efficiency.

Outside of the vast MC rendering literature, Bowers et al. [2011]

proposed to use MC ray tracing to approximate solutions to the Pois-

son problem for diffusion curves. Their approximation is visually

consistent with the solutions to the original Poisson problem in the

examples presented. Sawhney and Crane [2020] recently introduced

a Monte Carlo framework for solving boundary value PDE problems

in computational geometry processing. The Walk-on-Spheres (WoS)

approach [Muller 1956] they introduced to the graphics community

scales well to complex geometries than finite element methods –

analogously to the aforementioned evolution of physically-based

rendering methods. In a concurrent work, Sawhney et al. [2022] fur-

ther extended the approach for elliptic PDEs with spatially varying

coefficients.

We similarly depart from deterministic solvers and treat fluid

simulation with MC, deriving a stream function-based free-slip

boundary condition that solves a Poisson equation using a custom

antithetic WoS sampler. Our work builds upon the original WoS

method by Muller [1956], rather than Sawhney and Crane [2020],

since WoS cannot be applied straightforwardly to the Navier-Stokes

equations. Furthermore, we propose importance sampling and con-

trol variate variance reduction schemes to improve sample efficiency,

coupled with a practical caching mechanism to overcome naïve

recursive MC estimator complexity. Much like in light transport,

allowing the treatment of general scenes without discretization, our

MC fluid simulation does not fundamentally require explicit spatial

discretization commonly employed in fluid simulation.

Fluid simulation. The numerical prediction of fluid motions plays

an important role in a variety of fields, from weather forecasting to

the aerospace industry. In computer graphics, there is significant

demand to animate flowing water, swirling smoke, flickering flame,

and so on. Most work on this topic falls into a few broad families of

methods based on discretizing the classical incompressible Euler or

Navier-Stokes equations. Eulerian methods assume a static mesh or

grid through which the fluid flows and the relevant fluid equations

are discretized with finite difference/volume/element ideas [Fedkiw

et al. 2001; Foster and Fedkiw 2001; Stam 1999]. Lagrangian meth-

ods instead use degrees of freedom that move along with the fluid,

often using either meshfree particles such as in smoothed particle

hydrodynamics [Desbrun and Gascuel 1996; Müller et al. 2003] or

time-evolving meshes that must be adapted when they become too

deformed [Clausen et al. 2013; Misztal et al. 2013]. Hybrid meth-

ods, which use both Lagrangian particles and Eulerian grids, have

become popular because they can offer both the convenience and ef-

ficiency of Eulerian grids and the accurate advection of Lagrangian

particles [Jiang et al. 2015; Zhu and Bridson 2005].

We rely, in part, on tracing flow characteristics backwards in

time for potentially long periods, reminiscent of a family of recent
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Fig. 2. MC backtracing: To compute vorticity at a point and time of
interest (in blue, top 𝑡 = 4 layer) we project the point back to the previous
time step (yellow) and compute its velocity with our Biot-Savart estimator.
To do so, we generate random samples around the projected points (green),
recursively computing their vorticity. Once computed, we advect along the
velocity to the next position and repeat until we reach the initial condition.

Eulerian methods [Hachisuka 2005; Qu et al. 2019; Sato et al. 2018]

that use characteristic mapping [Mercier et al. 2013; Tessendorf and

Pelfrey 2011]. In contrast to ours, these methods use an Eulerian

grid and advect velocity rather than vorticity.

Another important family of methods replaces the primitive vari-

ables (pressure, velocity) with other variables with useful mathe-

matical properties. Vorticity-based methods are a common example

and can likewise be treated in either an Eulerian or Lagrangian

fashion. In the Eulerian setting, Mullen et al. [2009] presented a

circulation-preserving schemes viewed through the lens of discrete

differential geometry Stream functions (2D) or vector potentials

(3D) are closely related and defined such that velocity is the curl

of a potential, and hence inherently incompressible. Bridson et al.

[2007] used stream functions to design procedural flows; Ando et al.

[2015] used vector potentials to animate liquids with incompressible

bubbles. More broadly, stream function-vorticity methods have a

long history in computational fluid dynamics [Campion-Renson

and Crochet 1978; Peeters et al. 1987] and recent developments seek

Eulerian, non-primitive approaches using Clebsch variables [Chern

et al. 2016; Yang et al. 2021]. Our method tracks vorticities as the

main primitive variables.

Vortex particle methods. A Lagrangian treatment in vorticity vari-

ables leads to the vortex particle method, first introduced by Chorin

[1973]. The particles represent moving point sources of vorticity, and

the velocities needed to move the particles are reconstructed via the

Biot-Savart law (Eq. 4). The textbook by Cottet and Koumoutsakos

[2000] provides a thorough introduction. Early adaptations of such

ideas to computer graphics used both vortex particles [Park and Kim

2005] and vortex filaments [Angelidis and Neyret 2005]. Subsequent

developments have considered vortex sheets [Brochu et al. 2012;

Pfaff et al. 2012] and vortex segment clouds [Xiong et al. 2021]. The

computational complexity of naive vortex methods is𝑂 (𝑁 2), where

⋯
⋯Fig. 3. Exponential complexity: Applying our basic recursive formulation

leads to exponential cost as, starting from a point of interest (blue, top), we
must trace back for every random sample generated during the Biot-Savart
approximation (green), leading to an exponential branching factor.

𝑁 is the number of vortex elements. Several attempts have been

made to improve their computational efficiency, such as the vortex-

in-cell method [Couët et al. 1981], fast multipole method [Greengard

and Rokhlin 1987], and PPPM [Zhang and Bridson 2014].

Our work also exploits the vorticity form of the fluid equations

and the Biot-Savart law to derive a new recursive integral formula-

tion that is amenable stochastic MC estimation. Doing so enables a

wide variety of MC acceleration and/or variance reduction methods,

among which we present importance sampling and control variates.

Probabilistic fluid models. There has been some research into

probabilistic treatments of the Navier-Stokes equations: the Fourier
transformation method [Jan and Sznitman 1997], the Lagrangian
flow method [Constantin and Iyer 2007] and FBSDS method [Bus-

nello et al. 2005; Delbaen et al. 2015] to name a few. For a more

in-depth review, we refer readers to the work of Cruzeiro [2020].

However, this body of work primarily aims at the mathematical

study of the Navier-Stokes equations, including questions of exis-

tence and uniqueness; no practical numerical simulation has been

conducted to the best of our knowledge. We partially use this body

of work – most directly that of Busnello et al. [2005] – to construct a

stochastic, numerical approach to the Navier-Stokes equations that

properly treats viscosity and vortex stretching using the Feynman-

Kac formula. Sawhney et al. [2022] used this formula as a basis to

transform time-independent varying coefficients PDE to constant

coefficients. We instead use it to handle the time-dependent Navier-

Stokes equations. In a quite different vein, there has been a recent

resurgence of effort in graphics on Lattice Boltzmann methods [Li

et al. 2018, 2020], including complex obstacle support [Lyu et al.

2021]. These methods employ probability density functions to model

the evolution of fluid particles as a kind of cellular automaton, and

are highly parallelizable. While both being stochastic methods, our

method is not directly related to Lattice Boltzmann methods.

3 BASIC METHOD
Fluid motion is commonly modeled by the incompressible Euler or

Navier-Stokes equations describing the evolution of the velocity

field ®𝑣 in time. By considering the vorticity field ®𝜔 ≡ ∇ × ®𝑣 , one
can instead derive a time-evolution equation for vorticity [Cottet
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and Koumoutsakos 2000] that is the basis of various Lagrangian,

Eulerian, and hybrid fluid solvers [Elcott et al. 2007; Park and Kim

2005; Selle et al. 2005]. We adopt this vorticity-based approach, albeit

departing substantially from the typical formulations.

Vorticity advection is determined uniquely by a flow’s velocity

and vorticity fields. In contrast to Lagrangian vorticity methods

which propagate discrete vorticity elements forward in time, we

will use a semi-Lagrangian-like interpretation that conceptually

traces "backwards in time" along the flow to determine the vorticity

at a query point. To determine the required paths through the flow

at any instant in time, one can reconstruct the velocity field from

the vorticity field according to the Biot-Savart law. We will apply

MC to this problem. The combination of backward tracing and MC

yields our base recursive MC estimator of fluid flow (see Figure 2.)

3.1 Vorticity Equation
Given a velocity field ®𝑣 and corresponding vorticity field ®𝜔 , we start
with the well-established vorticity transport equation [Cottet and

Koumoutsakos 2000] for incompressible flow in three dimensions:

𝐷 ®𝜔/𝐷𝑡 = ( ®𝜔 · ∇)®𝑣 + 𝜈∇ · ∇ ®𝜔 , (1)

where 𝜈 is the kinematic viscosity coefficient and 𝐷/𝐷𝑡 = 𝜕/𝜕𝑡 +
(®𝑣 · ∇) is the material derivative. We assume constant density and

viscosity, no external forces (for now), and we defer discussion of

boundary conditions and external forces. Temporarily assuming

zero viscosity and considering the case of a 2D fluid, the so-called

vortex stretching term ( ®𝜔 · ∇)®𝑣 is also zero, so it simplifies to

𝐷𝜔/𝐷𝑡 = 0 , (2)

which corresponds to pure advection of vorticity. Furthermore, the

absence of a third dimension reduces the vorticity vector field to

a scalar field 𝜔 = 𝜕
𝜕𝑥 𝑣𝑦 −

𝜕
𝜕𝑦 𝑣𝑥 . This advection depends implicitly

on the velocity field, which is in turn determined by the vortic-

ity: the apparent simplicity of this evolution equation can thus

deceptively misrepresent the fact that it models much more than a

simple/passive “one-way" advection process.

In what follows, we denote the dependence of field quantities

on time 𝑡 and position ®𝑥 with parentheses, e.g., ®𝜔 (𝑡, ®𝑥). and we use

the following notational conventions in 2D: ∇ × Ψ =
[
𝜕𝑦Ψ,−𝜕𝑥Ψ

]
,

Ψ× ®𝐴 =
[
−Ψ𝐴𝑦,Ψ𝐴𝑥

]
= − ®𝐴×Ψ and ∇× ®𝐴 = 𝜕𝑥𝐴𝑦 − 𝜕𝑦𝐴𝑥 , where

Ψ is a scalar field and ®𝐴 =
[
𝐴𝑥 , 𝐴𝑦

]
is a 2D vector field.

3.2 Semi-Lagrangian Approach
Analytical solutions to (2) are not available in the general case. One

popular family of numerical methods to solve such advection prob-

lems is semi-Lagrangian schemes [Fedkiw et al. 2001; Stam 1999].

After discretizing in time with time step Δ𝑡 , a basic semi-Lagrangian

scheme with Forward Euler time integration of trajectories approx-

imates the updated vorticity ®𝜔 (𝑡, ®𝑥) at position ®𝑥 by querying the

previous time step vorticity field ®𝜔 (𝑡 − Δ𝑡, ®𝑥) as
®𝜔 (𝑡, ®𝑥) ≈ ®𝜔 (𝑡 − Δ𝑡, ®𝑥 − ®𝑣 (𝑡 − Δ𝑡, ®𝑥)Δ𝑡). (3)

3.3 Biot-Savart Law
We can advect the vorticity field ®𝜔 (𝑡, ®𝑥) based on (3) given the

velocity field ®𝑣 (𝑡, ®𝑥), which we in turn derive from ®𝜔 (𝑡, ®𝑥) using the

Biot-Savart law [Cottet and Koumoutsakos 2000],

®𝑣 (𝑡, ®𝑥) =
∫
X
®𝜔 (𝑡, ®𝑦) × ®𝐺 ( ®𝑥 − ®𝑦) d®𝑦 , (4)

whereX is a domain on which ®𝜔 is non-zero and the kernel is ®𝐺 ( ®𝑥 −
®𝑦) = ( ®𝑥 − ®𝑦)/(2𝜋 | ®𝑥 − ®𝑦 |2) in 2D and ®𝐺 ( ®𝑥−®𝑦) = ( ®𝑥 − ®𝑦)/(4𝜋 | ®𝑥 − ®𝑦 |3)
in 3D. The velocity field obtained from (4) satisfies both the di-

vergence free property (∇ · ®𝑣 = 0) and the definition of vorticity

( ®𝜔 = ∇× ®𝑣). Closed form solutions to (4) are usually unavailable and

we choose to estimate it with MC.

3.4 Monte Carlo Integration
MC integration is a stochastic numerical method to approximate

integrals as a carefully weighted average of independent random

samples. Wemake use of this method to approximate the Biot-Savart

integral (4) to compute the velocity ®𝑣 (𝑡, ®𝑥).
Biot-Savart MC estimator
Let {®𝑦𝑖 }𝑛mc

𝑖=1
be 𝑛mc independent samples drawn from prob-

ability distribution 𝑝 ( ®𝑦 | 𝑡, ®𝑥). The MC estimator of (4) is

⟨®𝑣 (𝑡, ®𝑥)⟩= 1

𝑛mc

𝑛mc∑
𝑖=1

®𝜔 (𝑡, ®𝑦𝑖 ) × ®𝐺 ( ®𝑥 − ®𝑦𝑖 )
𝑝 ( ®𝑦𝑖 | 𝑡, ®𝑥)

. (5)

3.5 Monte Carlo Fluids
Building atop these aforementioned ideas, our central goal is to cal-

culate the vorticity𝜔 (𝑡, 𝑥) of a dynamic fluid at simulation locations

𝑥 and times 𝑡 . The fluid has initial conditions 𝜔 (0, ®𝑥), ®𝑥 ∈ R2
. Any

subsequent state 𝜔 (𝑡, 𝑥) is necessarily a function of the initial state

𝜔 (0, ®𝑥) since the vorticity equation is deterministic. We begin by

expressing this evolution function explicitly.

Recursive integral formulation. Combining the semi-Lagrangian

scheme (3) for time evolution and the Biot-Savart law (4), we repre-

sent 𝜔 (𝑡, 𝑥) as an integral formulation of 𝜔 (𝑡 − Δ𝑡, 𝑥 ′) at a previous
time step:

𝜔 (𝑡, 𝑥) ≈ 𝜔 (𝑡 − Δ𝑡, 𝑥 − ®𝑣 (𝑡 − Δ𝑡, 𝑥)Δ𝑡) (6)

= 𝜔

(
𝑡 − Δ𝑡, 𝑥 − Δ𝑡

∫
X
𝜔 (𝑡 − Δ𝑡, ®𝑦) × ®𝐺 (𝑥, ®𝑦) d®𝑦︸                                          ︷︷                                          ︸

𝑥 ′

)
. (7)

We can represent 𝜔 (𝑡 − Δ𝑡, 𝑥 ′) as an integral equation of 𝜔 (𝑡 −
2Δ𝑡, 𝑥 ′′), backtracing recursively in time until reaching the initial

condition 𝜔 (0, ®𝑥). That is, 𝜔 (𝑡, 𝑥) can be represented as a multiply-

nested recursive integral formulation of 𝜔 (0, ®𝑥). A similar multiply-

nested recursive formulation is used in rendering to derive the path
space integral formulation of light transport [Pharr et al. 2018].

Monte Carlo backtracing. We can now replace the analytical inte-

gral in (7) with the MC estimator (5) to solve the recursive integral

by tracing backwards in time to the initial conditions. While we

discretized the time axis similarly to previous approaches in fluid

simulation, this estimator provides a point-wise estimation of ve-

locity without explicit discretization in space.

Consider an illustrative MC backtracing scenario in Figure 2. For

simplicitywe assume thatΔ𝑡 = 1. In order to compute the vorticity at
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a point of interest ®𝑥0 (blue) and a given time 𝑡 = 4 (top), we compute

the velocity at this location in the previous timestep (yellow) with

our Biot-Savart Monte Carlo estimator. Doing so requires us to

generate random samples around the projected point (green) and

compute their vorticities recursively (Fig. 3). Upon completing the

recursion, we advect the point of interest to its backward position

by the velocity and proceed recursively until we reach the initial

condition of the system (at 𝑡 = 0).

Discussion. To our knowledge, MC backtracing is the first numeri-

cal method to present a pointwise solution of the fluid equations both
in space and time. Given the benefits of MC – namely, the ability to

trade spatial discretization errors typical of alternative solvers for

variance in the MC estimate and the capability to apply various vari-

ance reduction techniques - MC backtracing may be an attractive

alternative. Moreover, when combined with physically-based Monte

Carlo rendering methods (e.g., path tracing), the variance in the fluid

solver and the renderer may likely lead to more perceptually pleas-

ant errors [Cook 1986]. One important caveat in the formulation

described thus far is that the recursive evaluations of the vorticity

at each backtraced sample lead to an exponential computational

complexity (Fig. 3). This major problem is implicitly woven into our

formulation but we will devise solutions that alleviate it.

4 ADVANCED METHODS
Wepresent several extensions of our basicmethod to tackle a broader

range of fluid problems and address computational constraints.

We first introduce support for free-slip solid boundary conditions

through an adaptation of the walk-on-spheres algorithm using a

stream function formulation. We then extend our formulation and

method from the 2D Euler equations to the fully 3D incompressible

Navier-Stokes, using the Feynman-Kac reformulation of the solution

as a forward/backward stochastic process. Finally, we devise a more

practical caching-based extension of the MC backtracing algorithm

that overcomes the exponential cost of the base algorithm.

4.1 Boundary Conditions
When no boundary conditions are mentioned, we assume infin-

itely far or periodic boundaries and apply the Biot-Savart velocity

estimator (5). To handle free-slip (or no through) solid boundary

conditions, we employ a Poisson equation (with Dirichlet boundary

conditions) to convert vorticity into a stream function, the curl of
which yields the desired velocity.

Free-slip boundaries. We present our derivations in the 2D setting

for clarity, but our ideas generalize fairly naturally to 3D (Section 4.2)

using vector potentials in place of stream functions [Bridson et al.

2007]. We initially consider boundaries with zero normal motion,

i.e., ®𝑣
wall
· 𝑛̂ = 0; under free-slip conditions, solid tangential velocity

has no effect on the flow so we need not constrain it. We define the

stream function Ψ(𝑡, ®𝑥). We flip the usual sign convention for the

stream function (®𝑣 = ∇ × Ψ) for convenience. (e.g., [Bridson et al.

2007]) such that

®𝑣 = −∇ × Ψ. (8)
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Fig. 4. Free-slip boundary conditions: Left to right, 𝑡 = 0, 5, 10 seconds.
Two vortices propagating in a maze (top), a flow inside a more complex
bunny-shaped boundary defined using a signed distance function (middle),
and vortices flowing around a solid obstacle in a periodic domain (bottom).

Combining this expression with the definition of vorticity gives the

following relationship (in 2D):

𝜔 = ∇ × ®𝑣 = ∇ × (−∇ × Ψ) = ∇ · ∇Ψ . (9)

From (8), if Ψ is constant along the boundary (i.e., an isosurface of

Ψ), the normal component of the velocity will be zero (i.e., ®𝑣 · 𝑛̂ = 0).

Moreover, if the boundary is connected and piecewise smooth, we

can arbitrarily set the isovalue to 0 without loss of generality (Fig. 4).

With multiple disconnected boundaries, we can still set the same

isovalue to each of them if we can expect zero net flow between the

boundaries. Thus, after solving the Poisson equation (9) for such a

stream function we obtain a velocity field that satisfies our desired

boundary condition. In 3D, the true boundary condition (∇×Ψ) ·𝑛̂ is

more involved as it features derivative interactions among multiple

components of the vector Ψ [Ando et al. 2015]. Like Bridson et al.

[2007], our current 3D results simply use Ψ = ®0; further study will

be needed to properly resolve scenarios with multiple objects and

nontrivial topologies.

Free-Slip Boundary Conditions

Given a domain 𝐷 ⊂ R2
, we impose slip boundary con-

ditions using a stream function Ψ of the velocity field

®𝑣 = −∇ × Ψ by solving the following Poisson equation

with Dirichlet boundary conditions:

∇ · ∇Ψ( ®𝑥) = 𝜔 ( ®𝑥) for ®𝑥 ∈ 𝐷 and (10)

Ψ( ®𝑦) = 𝑔( ®𝑦) for ®𝑦 ∈ 𝜕𝐷, (11)

where 𝑔( ®𝑦) = 0 and 𝜕𝐷 is the boundary of 𝐷 .

Note that we do not first compute a current full-domain vorticity

field and then solve this Poisson equation as a distinct step; rather,

we use WoS to tightly integrate it into our recursive algorithm as a

direct replacement for the Biot-Savart MC velocity estimator (5).

ACM Trans. Graph., Vol. 41, No. 6, Article 240. Publication date: December 2022.



240:6 • Rioux-Lavoie, Sugimoto, Özdemir, Shimada, Hachisuka, Batty, and Nowrouzezahrai

⃗x 0

⃗y 0
⃗x 1

⃗x m1
B( ⃗x 0)

∂B( ⃗x 0)

D

∂D∂Dϵ

Fig. 5. Walk-on-Spheres gradient computation visualization: con-
sider the interior samples ®𝑦𝑘 ∼ 𝜕𝐵 ( ®𝑥𝑘 ) (green) and boundary samples
®𝑥𝑘+1 ∼ 𝐵 ( ®𝑥𝑘 ) (blue). We sample two points ®𝑥1 and ®𝑥𝑚

1
on the largest in-

scribed sphere centered at ®𝑥0 using antithetic sampling and compute their
respective normals (red arrows) at the boundary. From these sampled posi-
tions, we proceed with a standard walk-on-spheres – tracing two opposing
random paths – and end the recursion once we penetrate a threshold region
𝜕𝐷𝜖 (dark grey) to compute Ψ̂( ®𝑥1) and Ψ̂( ®𝑥𝑚

1
) .

Walk-on-spheres method. The WoS method [Muller 1956] is an

MC pointwise solver for linear elliptic PDEs such as Poisson equa-

tions with Dirichlet boundaries.Since WoS computes the pointwise

solution via MC sampling, it is well-suited to our method.

Our interest is in determining the curl of the stream function

(i.e., velocity), so we apply a gradient WoS estimator [Sawhney and

Crane 2020] to the aforementioned Poisson equation with Dirichlet

conditions, and use the components of ∇®𝑥Ψ to form the curl (e.g.,

in 2D by 90
◦
rotation). To evaluate ∇®𝑥Ψ( ®𝑥0), the WoS algorithm

estimates a recursive integral equation by recursively sampling

a point ®𝑦𝑘 inside the largest sphere around the current point ®𝑥𝑘
and sampling another point ®𝑥𝑘+1 on the boundary of sphere to

continue its recursion. A slight improvement is that we use antithetic

sampling to get the first boundary sample, meaning that in addition

to ®𝑥1 we always add an extra sample, ®𝑥𝑚
1
, on the opposite side of

the sphere (also applying WoS to it); see Figure 5 for visual intuition.

Omitting antithetic sampling can easily lead to a large variancewhen

trying to compute the gradient of a constant non-zero function.

Other boundary conditions. With a slight modification of the con-

struction above, we can support inflow and outflow boundaries. By

dividing the solid boundary into distinct pieces, each with a constant

stream function value, and connecting them via linearly interpolated

stream function values along the inflow/outflow segments of the

boundary, we arrive at a stream function along the inflow/outflow

whose gradient is parallel to the boundary (Fig. 6). Taking the (nega-

tive) curl recovers the velocity that yields the desired perpendicular

(constant) inflow or outflow.

We can further generalize our inflow/outflow treatment tomoving

solid boundaries with prescribed velocities, again with free slip

(Fig. 7). In 2D, the stream function along the boundary must satisfy

the constraint

®𝑣
b
· 𝑛̂ = 𝜕Ψ

/
𝜕𝑡 , (12)

−0.005 𝚿 +0.005 −1.0 Density +1.0
Fig. 6. Inflow and outflow regions highlighted in green on the boundary
of the domain. Left: the stream function corresponding to setting the top
part of the solid wall to Ψ = 0.005 and the bottom to Ψ = −0.005. Ψ values
at the inflow and outflow vary linearly, yielding constant normal velocity.
Right: the motion of an advected checkerboard density field.

where ®𝑣
b
is the velocity of the boundary, and 𝑛̂ and 𝑡 are the normal

and tangent to the boundary.

We can choose any reference point on the solid surface and set

it to some constant value Ψ0, after which determining the stream

function along the rest of the boundary (e.g., for a polygon with

Ψ𝑖 data at nodes ®𝑠𝑖 ) from the prescribed velocity field ®𝑣
b
requires

integrating the expression above to obtain

𝜓𝑖+1 = 𝜓𝑖 +
∫ ®𝑠𝑖+1

®𝑠𝑖
(®𝑣
b
· 𝑛̂) d®𝑠 . (13)

Assuming a divergence-free solid boundary velocity field, the net

flux along the surface will be zero; thus, the integration around its

boundary loop back to ®𝑥0 will yield the same starting value of Ψ.

−0.01 𝚿 +0.01 −1.0 Density +1.0

Fig. 7. Moving obstacles: A square moves left to right at constant speed
through the domain. The stream function (top left) and the initial density
field (top right) to be advected, and the result after some time (bottom).
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Xi

⃗x a = ⃗x −Δt ⃗u (t − Δt, ⃗x )

Uj

Uj+1

⃗x b = ⃗x a + 2νΔtξ ⃗ω (t, ⃗x ) = Uj

Uj−1
⃗ω (t, Xi)

Xi Xi

Xi+1 Xi+1

Xa

Fig. 8. Recursive MC Fluid solver for Navier-Stokes equations: (Left) First we advect the position of interest backward in time using a semi-Lagrangian
approach and a MC velocity estimate. (Middle) Then, we simulate viscosity by adding a Gaussian perturbation (with an appropriately-derived variance) to
the advected position and compute the vorticity recursively. (Right) Finally, we compute and propagate the stretching factor forward in time to the original
position by multiplication with the computed vorticity.

For polygons and other simple shapes undergoing simple (e.g.,

rigid body) motions, we can obtain exact expressions of the stream

functions on the obstacle boundaries [Bridson et al. 2007].

4.2 Navier-Stokes Flows
Moving beyond the simple case of flows satisfying the 2D incom-

pressible Euler equation, which we used to provide the intuition

behind our backtracing algorithm, we now treat the more challeng-

ing case of incompressible Navier-Stokes flows in 3D. That is, we

reintroduce the viscous diffusion and vortex stretching terms and

rewrite the vorticity transport equation (1) as

𝐷 ®𝜔
𝐷𝑡

= D®𝑣 ®𝜔 + 𝜈∇ · ∇ ®𝜔 , (14)

where D®𝑣 = (∇®𝑣 + ∇®𝑣⊺)/2 is the strain-rate tensor. The new term

D®𝑣 ®𝜔 is an alternative but equivalent form of the stretching term

( ®𝜔 · ∇)®𝑣 that will be easier to work with.

Feynman-Kac representation. We wish to compute solutions to

(14) at a specific time 𝑡 and position 𝑥 , given an initial condition on

the vorticity field, analogous to the earlier 2D case. The problem

now, however, is more complex: the viscous term effectively adds

randomness to the possible trajectories of fluid particles and the

stretching term will deform the vorticity according to the flow. To

overcome these complexities, we take inspiration from theoretical

work on the open problem of the existence and smoothness of solu-

tions to Navier-Stokes [Busnello et al. 2005] and the path integral

formulation of quantum mechanics. We apply the Feynman-Kac

formula – a mathematical tool that expresses the solution to deter-

ministic PDEs as a stochastic process – to the fluid equations. Doing

so will enable us express our numerical solution as a weighted ex-

pectation of the initial vorticity, deformed along various trajectories.

More formally, the Feynman-Kac formula [Oksendal 2013] states

that solutions of the vorticity transport equation satisfy

®𝜔 (𝑡, 𝑥) = E [𝑈𝑡 ®𝜔 (0, 𝑋𝑡 ) |𝑈0 = 𝐼 , 𝑋0 = 𝑥] , (15)

where the expectation is with respect to the Wiener measure, i.e.,

all possible realizations of the Wiener processes𝑊𝑠 . Here, the La-
grangian path 𝑋𝑠 is a realization of the time-reversed stochastic

process 𝑌𝑠 defined by the stochastic differential equation

d𝑌𝑠 = −®𝑣 (𝑡 − 𝑠, 𝑌𝑠 ) d𝑠 +
√

2𝜈 d𝑊𝑠 with 𝑌0 = 𝑥, (16)

and the deformation matrix along a reversed Lagrangian path 𝑋𝑠 is

𝑈𝑡 = exp

(∫ 𝑡

0

D®𝑣 (𝜏, 𝑋𝑡−𝜏 ) d𝜏
)
, (17)

It has been shown that, given a Lagrangian path, this process (17) is

a solution to the differential equation

d𝑈𝑡 = D®𝑣 (𝑡, 𝑋𝑡−𝑡 )𝑈𝑡 d𝑡 with𝑈0 = 𝐼 . (18)

We refer to (16) as the backward process, since it propagates back-
wards in time (i.e. 𝑠 = 𝑡 − 𝑡 ), and to (18) as the forward process. These
expressions and their derivations appear in [Busnello et al. 2005]

but have not been used to construct a practical numerical method.

While daunting at first glance, the intuition behind these expres-

sions is comparatively straightforward, as illustrated in Figure 8.

First, consider the backward process (16) associated to a stochastic

differential equation that models the backward trajectory of ficti-

tious particles that cross the position 𝑥 at time 𝑡 . The process traces

back the trajectories of these particles according to the underlying

velocity field (left term, RHS) as we did before, but now addition-

ally accounts for the diffusive process (rightmost term) through

the randomness of the Wiener process𝑊𝑠 . All these trajectories

carry some vorticity according to their initial state, however these

vorticities need also be warped by the local strain-rate tensor along

their trajectory to account for vortex stretching. This is precisely

what the forward process (18) models: it stretches the initial particle

vorticities according to the strain-rate along their trajectory. Finally,

the Feynman-Kac formula (15) states that the vorticity at location 𝑥

and time 𝑡 is exactly the average over the stretched vorticity carried

by all trajectories that crossed the position at the given time
‡
.

Monte Carlo estimation. We construct a three-step algorithm to

evaluate the expectation (15): an advection step, a diffusion step,

and a stretching step. We adopt the notation 𝑋𝑖 = 𝑋𝑠𝑖 where

𝑠𝑖 = 𝑖Δ𝑠 , Δ𝑠 = 𝑡/𝑛 and 𝑖 ∈ {0, · · · , 𝑛} for the discretized quanti-

ties. We discretize (16) with a semi-implicit variant of the Euler-

Maruyama [Maruyama 1955] method, yielding the Lagrangian path

𝑋𝑖+1 = 𝑋𝑖 −

Advection︷               ︸︸               ︷
Δ𝑠 ®𝑣 (𝑡 − 𝑠𝑖+1, 𝑋𝑖 ) +

Diffusion︷    ︸︸    ︷√
2𝜈Δ𝑠 ¯𝜉𝑖 with 𝑋0 = 𝑥 , (19)

‡
An alternative interpretation draws on the Feynman path integral in quantum me-

chanics, with probability weights assigned to paths and where the quantity of interest

at a location is determined by the average over all possible probability-weighted paths.
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where
¯𝜉𝑖 ∼ N(®0, 𝐼 ) is a normally distributed random sample. With-

out viscosity this discretization simplifies to that of Section 3. If one

uses just a single MC sample during the diffusion step, our treat-

ment of diffusion becomes essentially consistent with that of Chorin

[1973], where the position is perturbed using appropriately-scaled

Gaussian noise.

Our derivation is actually agnostic to the choice of temporal dis-

cretization. For instance, the deterministic term of (16) could instead

be discretized using other standard advection approaches, such as

Runge-Kutta and MacCormack methods. However, for simplicity of

presentation we will use the simple semi-implicit form given in the

equations above.

We similarly discretize the deterministic equation (18) with a

forward Euler scheme, yielding

𝑈 𝑗+1 = [𝐼 +

Stretching︷              ︸︸              ︷
Δ𝑡D®𝑣 (𝑡 𝑗 , 𝑋𝑡−𝑡 𝑗 )]𝑈 𝑗 with𝑈0 = 𝐼 . (20)

One can approximate the strain-rate tensor D®𝑣 in various ways: by

finite differences, by applying Monte Carlo integration by passing

the gradient of the velocity field through the Biot-Savart integral (4)

or through a Hessian WoS estimator, or by converting the vorticity

field to a vortex segment representation and advecting it according

to the velocity field, as in the work of Zhang and Bridson [2014].

We adopt the last approach due to its superior stability in practice;

the term D®𝑣 ®𝜔 can be approximated by

D®𝑣 ®𝜔 (𝑡, ®𝑥) ≈
| ®𝜔 (𝑡, ®𝑥) |

ℎ

[
®𝑣
(
𝑡, ®𝑥 + −→Δ𝑥

)
− ®𝑣

(
𝑡, ®𝑥 − −→Δ𝑥

)]
, (21)

where

−→
Δ𝑥 = (ℎ/2) ®𝜔 (𝑡, ®𝑥) and ℎ is the length of the vortex segment.

(Note that

−→
Δ𝑥 is unrelated to the gradient of ®𝑥 .) One can estimate

the velocities at the ends of a vortex segment using the appropriate

velocity estimator to get an estimate ofD®𝑣 ®𝜔 . See Section 4.3 for the

implementation details.

Monte Carlo Fluid
When computing the vorticity ®𝜔 at time 𝑡𝑖 = 𝑖Δ𝑡 and posi-

tion ®𝑥𝑖 with initial condition ®𝜔 (0, ·) known, we have

®𝜔 (𝑡𝑖 , ®𝑥𝑖 ) =
1

𝑛𝑑

𝑛𝑑∑
𝑗=1

[
®𝜔

(
𝑡𝑖−1, ®𝑥 𝑗𝑖−1

)
+ Δ𝑡

〈
D®𝑣 ®𝜔 (𝑡𝑖−1, ®𝑥 𝑗𝑖−1

)
〉]

,

®𝑥 𝑗
𝑖−1
∼ N(®𝑥𝑖 − Δ𝑡 ⟨®𝑣 (𝑡𝑖−1, ®𝑥𝑖 )⟩,

√
2𝜈Δ𝑡 𝐼 ) , (22)

where 𝑛𝑑 is the number of diffusion samples, and ⟨®𝑣⟩ and〈
D®𝑣 ®𝜔

〉
are Monte Carlo estimates of (5) or (8) and (21).

Implementation. After rewriting the Feynman-Kac expectation

(15) as a one-step MC estimate and replacing the velocity and the

stretching term with their respective MC estimates, we arrive at our

algorithm (see pseudocode in Alg. 1).

4.3 Practical Implementation with Caching
As outlined earlier, a naive implementation of our MC Fluid algo-

rithm (7) suffers from an exponential increase in vorticity samples –

all of whichmust be recursively evaluated –with respect to time (Fig.

3). We offer a strategy to circumvent this problem using a uniform

Algorithm 1: Vor (𝑡, ®𝑥): Recursive vorticity computation

Input: Time and position of interest 𝑡 and ®𝑥
Output: Vorticity at (𝑡, ®𝑥)
Data: 𝐼 is the Identity matrix

if t == 0 then
return InitVor( ®𝑥) // Initial condition

®𝑥𝑎 ← ®𝑥 − Δ𝑡 CompVel(𝑡 − Δ𝑡, ®𝑥) // Advection (5) or (8)

®𝜔 ← ®0
for 𝑖 ← 1 to 𝑛𝑏 do
®𝑥𝑖 ∼ N(®𝑥𝑎,

√
2𝜈Δ𝑡 𝐼 ) // Diffusion

(D®𝑣 ®𝜔)𝑖 ← Stretch(𝑡 − Δ𝑡, ®𝑥𝑖 ) // Stretching (21)

®𝜔 ← ®𝜔 + [Vor (𝑡 − Δ𝑡, ®𝑥𝑖 ) + Δ𝑡 (D®𝑣 ®𝜔)𝑖 ]
®𝜔 ← ®𝜔/𝑛𝑑
return ®𝜔

grid cache. Similar to dynamic programming solutions to recursive

problems, we store and reuse the vorticity field (and the velocity

field in some applications, as we discuss later) as it is computed. We

can proceed in two ways.

The first is to fill a spatio-temporal grid using the same recursion

as before with respect to a position and time of interest. Doing

so will gradually fill out a spatio-temporal “cone" of earlier data,

rather than evaluating over the whole domain for all time steps. This

approach may be ideal when one wishes to evaluate the simulation

backwards in time, e.g., in view-dependent simulation.

Alternatively, we can use only a single spatial grid that stores the

vorticity computed at the center of each cell at the preceding time

step. In essence, at every time step we query this cache to get the

previous time step vorticity during Monte Carlo estimation of the

Biot-Savart integral for the velocity field. As we will discuss later,

this method also conveniently offers a way to generate importance

sampled Monte Carlo samples distributed according to the vorticity

field, reducing variance and increasing sample efficiency. Unless

noted otherwise, all results are generated using this latter approach.

To evaluate the stretching term (21) for 3D simulations, we choose

ℎ to be the grid resolution in the absence of boundaries, and in the

presence of boundaries we use the minimum of the grid resolution

and twice the closest distance to any boundary. For this stretching

term computation, we fetch the cached velocities in practice because

the bilinear or trilinear interpolation smoothes out the velocity field,

which reduces the noise when we compute the stretching term, and

because we can save computational time.

4.4 Variance reduction
Our MC approach opens the opportunity to exploit a plethora of

variance reduction methods within the context of fluid simulation. In-

deed, we have already presented the antithetic sampling method for

the WoS estimator to reduce the variance. We additionally present

a few more basic yet practical variance reduction methods as exam-

ples of what would be possible with our MC approach. Section 6

discusses further potential opportunities.

Importance sampling. One of the most popular and basic variance

reduction methods is importance sampling. The idea is to generate

samples according to a given probability density function (PDF) to
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Parameter setting: Nearest Neighbor Biot-Savart ∆t = 0.2 128 × 128 nmc = 256
Baseline setting: Bilinear Vorticity ∆t = 0.05 512 × 512 nmc = 1024

Fig. 9. Parameter settings: Top to bottom, frame times are 𝑡 = 2.5, 5, 7.5 seconds. Our baseline simulation (left) with high quality parameter settings (in blue)
uses a 512 × 512 uniform cache resolution, importance sampling of the vorticity field, bilinear interpolation, Δ𝑡 = 0.05 seconds, 𝑛mc = 1024 samples, and 𝜈 = 0.
Subsequent columns analyse the impact of adjusting exactly one parameter in favor of a faster but less accurate result. Left to right: baseline/high-qulaity
setting, nearest neighbor interpolation, importance sampling the Biot-Savart kernel, larger time step, coarser cache, and lower MC sampling rate.

reduce the variance. A well chosen PDF can drastically reduce the

variance, and thus the error of the estimators, and we can come up

with a couple of such PDFs that are well-suited to our setting.

The first option is to generate samples proportionally to the in-

tegral kernel; the Biot-Savart kernel in the Biot-Savart case (i.e.,

infinite/periodic boundaries) and the harmonic Green’s function

in the WoS case (i.e., prescribed boundaries). Sampling according

either of those functions is trivial. This importance sampling works

especially well for WoS, but not always for the Biot-Savart case.

For the Biot-Savart case, this PDF can be only marginally better

than uniform sampling in case non-zero vorticities are concentrated

in a small region. The second option in this case is to importance

sample directly according to the magnitude of the vorticity field.

Since we are already caching vorticities to overcome the exponential

cost of recursion, we can utilize this cache to perform importance

sampling. Figure 9 illustrates an equal sample comparison between

these two options. In this example, the baseline which uses sampling

according to vortices produced a more accurate result (e.g., long

and thin features of vorticities) than the alternative of sampling

according to the Biot-Savart kernel.

Control variates. A sequential nature of fluid simulation fits well

to the method of control variates. The method of control variates

utilizes another analytically integrable function (a control variate) to
estimate only the difference between this function and the original

integrand via MC integration. This method can reduce variance

when the original integrand and the control variate are correlated.

In our application, to estimate the velocity using the Biot-Savart

law (4), we can use the vorticity field from the previous time step as a

control variate, as follows:

®𝑣 (𝑡, ®𝑥) =
∫
X
[ ®𝜔 (𝑡, ®𝑦) − ®𝜔 (𝑡 − Δ𝑡, ®𝑦)] × ®𝐺 ( ®𝑥 − ®𝑦) d®𝑦

+
∫
X
®𝜔 (𝑡 − Δ𝑡, ®𝑦) × ®𝐺 ( ®𝑥 − ®𝑦) d®𝑦

=

∫
X
[ ®𝜔 (𝑡, ®𝑦) − ®𝜔 (𝑡 − Δ𝑡, ®𝑦)] × ®𝐺 ( ®𝑥 − ®𝑦) d®𝑦 + ®𝑣 (𝑡 − Δ𝑡, ®𝑥) .

(23)

Note that having already estimated ®𝑣 (𝑡 − Δ𝑡, ®𝑥) from ®𝜔 (𝑡 − Δ𝑡, ®𝑦) in
the previous time step, this term is available in the current time step.

Unlike a typical application of the method of control variates, how-

ever, this term ®𝑣 (𝑡 −Δ𝑡, ®𝑥) is only an estimation with some variance,

not an analytical integration of ®𝜔 (𝑡 − Δ𝑡, ®𝑦). When ®𝑣 (𝑡 − Δ𝑡, ®𝑥) is
similarly estimated by using ®𝜔 (𝑡 −2Δ𝑡, ®𝑥) as the control variate, this
approach may not reduce variance overall. We circumvent this issue

by estimating the initial velocity ®𝑣 (0, ®𝑥) using a higher sample count

than the rest. This approach will propagate variance reduction via

this control variate at 𝑡 = 0 all the way to the current time, without

increasing the sample count in any other time than 𝑡 = 0.

We generate samples according to the difference of vorticity fields

at two consecutive time steps to evaluate the first intergral, and add

the cached velocity from the previous time step. Due to the high

correlation between the vorticity fields over time, we can expect that

the variance of ®𝜔 (𝑡, ®𝑦) − ®𝜔 (𝑡 − Δ𝑡, ®𝑦) is smaller than ®𝜔 (𝑡, ®𝑦). Thus,
this method greatly reduces the variance of our velocity estimate,

given that the variance of the initial velocity field is low enough.
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Fig. 10. Comparison with standard solvers: Left to right, 𝑡 = 0, 1, 2, 5, 10 seconds. Our method (top) produces results that are consistent with the vortex
particle (middle) and hybrid FLIP (bottom) baselines. Colors visualize the signed vorticity at each (particle) position.

Figure 11 illustrates an equal sample comparison when we have

the control variate enabled and disabled, and the method of control

variates works well as expected. We applied this method only to

the 3D scenes (without boundaries), where we expect significant

reductions of sampling cost.

(a) reference (b) with control variate (c) w/o control variate

Fig. 11. Control variate: When the number of samples used is small,
the application of control variate (middle) produces the results closer to
reference simulation result (left) compared to the results without control
variate (right). We advect a constant density at the bottom according to the
velocity field simulated with our method, and render the results fully (top)
and with a cross section visualization (bottom).

5 RESULTS
Comparison to existing methods. We compare our method to a

pair of representative existing methods (Figure 10): a particle-based

solver that implements the vortex particle method of Park and Kim

[2005] – using the Biot-Savart law to forward integrate vortex par-

ticle trajectories (2500 particles) while treating free slip boundaries

with a panel method (80 panels) – and a (hybrid) grid-based FLIP gas

solver [Bridson 2015; Zhu and Bridson 2005] with grid resolution

𝑛x = 50, 6 FLIP particles per grid cell, and Δ𝑡 = 0.05.We visualize the

vorticity field, in blue (positive) and orange (negative). We initialize

the methods with the same vector field. Our simulation output is in

strong agreement with the two baselines, suggesting that it indeed

generates a valid solution to the fluid equations.

Our method using WoS runs at an average of 21 seconds per

frame (with a multi-threaded CPU implementation). Both the vor-

tex particle method and FLIP run orders of magnitude faster (i.e.,

roughly 0.005 and 0.25 seconds respectively). Sawhney and Crane

[2020] also noted a similar performance gap in their comparisons

between WoS and finite-element methods for geometry processing.

Despite this significant room of improvement in computation time,

our method does have some fundamental advantages. First, the lack

of reliance on a linear solve and the point-wise nature of our method

make it easily parallelizable and GPU friendly (as evidenced by our

ShaderToy and CUDA implementations, discussed below). Second,

particle methods rely on nearest neighbor search to interpolate val-

ues which can become quite expensive with many particles, which
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Fig. 12. We simulate two leapfrogging vortex rings (top) with a cross section visualization to illustrate the interior flow. We passively advect constant density
fields toward closed mesh (middle) and triangle soup Stanford bunnies (bottom). We render all simulations with Blender’s [2022] principled volume shader.

does not exist in our method. Third, grid-based solvers are generally

suffering from numerical diffusion, as evidenced in the fluctuations

of colors in Figure 10, which is less evident in our method due to

its point-wise nature. Last, our formulation based on WoS enables

handling of noisy boundaries with no additional effort, as we discuss

later. Similar to its application in geometry processing [Sawhney

and Crane 2020], a further study and better implementation of our

MC approach would reduce the performance gap, leaving the fun-

damental advantages of MC as noted above.

Viscosity. The viscosity formulation of our 3D flow solver (Section

4.2) applies equally well in 2D. Figure 13 presents a 2D viscous

simulation using our approach and a 512×512 uniform cache, nearest

neighbor interpolation, importance sampling of the vorticity cache,

𝝂
=

0
𝝂
=

0.
00

1

Fig. 13. Viscous simulation: Left to right, 𝑡 = 0.2, 2, 5 seconds. Inviscid
simulation with 𝜈 = 0 (top) and viscous with 𝜈 = 0.001; 𝑛d = 4. (bottom)

Δ𝑡 = 0.05, and 𝑛mc = 1024. Given that physical diffusion has an

effect similar to interpolation, we found nearest neighbor (rather

than bilinear) interpolation to be acceptable here.

Boundary conditions. Figure 4 presents various solid boundary

configurations. All three scenes use a uniform cache of 512 × 512,

Δ𝑡 = 0.05, 𝑛mc = 256, and 𝜈 = 0. As our method for free-slip

boundary conditions relies on WoS, it benefits from some of the

same attractive properties as the method of Sawhney and Crane

[2020], e.g., flexibility in the choice of geometric representations,

such as meshes, polygon soup, or even unsigned distance functions.

In Figure 6, we illustrate our inflow/outflow boundary conditions.

Since the integral of the stream function on the boundary is zero,

the corresponding velocities yield zero net flux; that is, exactly as

much matter enters the domain as exits.

Figure 7 illustrates our moving boundary support. Here, we treat

a constant translational velocity for simplicity, since this imposes a

constant stream function on the boundary and simplifies computa-

tion. Obtaining analytic formula for complex rigid bodies undergo-

ing simple motion is a possibility for more advanced applications,

as noted in Sec. 4.1. Both the inflow and moving boundary applica-

tion were implemented as high-performance real-time demos in the

online GPU ShaderToy framework, evidencing the suitability of our

approach to parallel computation.

Figures 12 (bottom) and 14 show that our method can accept com-

plex geometry without the added effort of other methods [Azevedo

et al. 2016; Hyde and Fedkiw 2019; Lyu et al. 2021], such as chal-

lenging tetrahedral mesh or cut-cell generation for velocity-based

schemes or panel methods in vorticity schemes. As emphasized by

Sawhney and Crane [2020], accurate conforming mesh generation

for a complex obstacle can take many minutes or hours; however,
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Fig. 14. Subgrid-size obstacle: Our approach can take into account a
tiny obstacle. A subgrid-sized square (the rightmost image visualizes its
unsigned distance function) affects the fluid flow (top). In 3D, subgrid-width
chain link fence wires affect the fluid flow (bottom).

as long as we have access to a method for fast evaluation of the

distance field, our Monte Carlo-based methods can immediately be

applied. In the triangle soup boundary example in Figure 12, we

construct a BVH tree of triangles to evaluate distance to the closest

boundary. Figure 12 shows a case when the domain contains an

obstacle whose size is smaller than the cache grid resolution (about

1/39 of a grid cell width for the 2D scene, and 1/3 of a cell width

for the 3D scene), yet is naturally respected by the flow. A typical

grid-based solver would either miss this geometry altogether, rely

on conservative rasterization to nonphysically inflate the obstacle,

or need to introduce an approximate drag model to influence the

flow. Notably, the complex 3D fence topology of 14 exceeds the

limits of what the simplified Ψ = ®0 boundary condition is expected

to accurately support, leading to somewhat more damped flow from

one side to the other. Extending WoS to support the Ψ = ∇𝜙 bound-

ary condition of Ando et al. [2015] may be one avenue to address

this shortcoming.

Convergence. In the limit as Δ𝑡 goes to zero and the number of

samples approaches infinity, our method formally should converge

to the correct solution (up to the accuracy limited by cache, when

applicable). Figure 10 qualitatively demonstrates that our method

indeed gives a result that is consistent with existing techniques.

We opted to evaluate the convergence of our method using the

steady-state inviscid Taylor-Green vortex flow [Taylor and Green

1937], for which a closed-form solution is known. Figure 15 shows

log-scale plots of the root mean square error (RMSE) against the

number of Biot-Savart samples 𝑛mc, number of cache cells 𝑛c = 𝑛2

x

and time step interval Δ𝑡 . All errors were computed at the physical

times 𝑡 = 0.25, 0.5, 1 using importance sampling of the vorticity,

bilinear interpolation, RK4 advection, without control variate. We

also let Δ𝑡 = 2
−6
, 𝑛x = 2

10
and 𝑛mc = 2

10
whenever they are fixed.

A well-known fact about MC methods is that their error diminishes

in inverse proportion to the square root of the number of samples,

i.e. O(1/√𝑛mc) [Robert and Casella 1999]. We confirmed this behav-

ior in our experiment. Similarly, we observed O(1/√𝑛c) which is

reasonable given our use of bilinear interpolation. These trends are

observed only when the other parameters are good enough to have

negligible error contributions. Finally, we observed a convergence

order of approximately O(Δ𝑡0.85). However, convergence is lost

whenever Δ𝑡 gets too small. This regime change is in line with the

use of a semi-Lagrangian advection scheme [Xiu and Karniadakis

2001]. Intuitively, the error stops decreasing when the interpolation

error starts dominating the advection error. Since more steps are

needed to reach the same physical time, the error increase as Δ𝑡
gets smaller.

3D simulations. We demonstrate our method in 3D, with and

without obstacles (Figure 12) using CUDA parallel GPU implemen-

tations. The leapfrogging simulation uses a uniform cache resolution

of 256
3
, trilinear interpolation, the control variate method enabled,

Δ𝑡 = 0.1, 𝑛mc = 128, and 𝜈 = 0. The initial velocity field is estimated

with 𝑛mc = 16384, importance sampling the initial vorticity field.

The simulation time is roughly 3.5 seconds per step on a machine

with two NVIDIA Tesla P100 GPUs at these settings. The Stanford

bunny obstacle with slip boundaries uses a uniform cache resolution

of 128
3
, trilinear interpolation, importance sampling the harmonic

Green’s function, Δ𝑡 = 0.1, 128 WoS paths with maximum 8 steps,

1024 samples for the volume integral evaluation (Eq. 14 in the pa-

per by Sawhney and Crane [2020]), and 𝜈 = 0. Simulation time is

roughly 70 seconds for the triangle mesh boundary and 75 seconds

for the triangle soup boundary per step on a machine with four

NVIDIA Tesla V100 GPUs using BVHs for closest distance compu-

tation. We believe this small difference of runtimes (additional 5

seconds for triangle soup) is because of the additional cost for the

closest distance evaluation.

We perform no low-level simulator optimization, focusing instead

on the method’s feasibility; GPU memory access optimizations and

faster BVH traversal implementations can be explored. We also

Fig. 15. Convergence analysis: Root mean squared error computed
against the analytical solution 𝜔 (𝑥, 𝑦) = sin(𝑥) cos(𝑦) for 𝑥, 𝑦 ∈
[−𝜋, 𝜋 ]2 (top right). We show the convergence profile of different
parameters at different physical times 𝑡 = 0.25, 0.5, 1 seconds. We
observe that our method does converge numerically to the true so-
lution as the number of cell 𝑛c = 𝑛2

x → ∞ (bottom left), when the
number of samples 𝑛mc → ∞ (top left) and when Δ𝑡 is not too large
or small (bottom right).

ACM Trans. Graph., Vol. 41, No. 6, Article 240. Publication date: December 2022.



A Monte Carlo Method for Fluid Simulation • 240:13

foresee and briefly discuss many interesting open avenues of work

(Section 6) to improve performance, and scale to larger simulations

drawing inspirations from the rendering community.

Control variates. The method of control variates as described in

Sec. 4.4 can greatly reduce the variance of simulation. Figure 11

shows the effect of our control variate. All three simulations use a

cache resolution of 128
3
, trilinear interpolation, Δ𝑡 = 0.1, and 𝜈 = 0.

The reference simulation (a) uses importance sampling according

to the Biot-Savart kernel with 𝑛mc = 2048. The simulation with

control variate (b) uses the control variate strategy in Sec. 4.4 with

𝑛mc = 32, with the initial velocity field estimated with 𝑛mc = 16384

using importance sampling according to the initial magnitude of

the vorticity field. The simulation without control variate (c) uses

importance sampling according to the magnitude of the vorticity

field with the same 𝑛mc = 32. We can observe that even with as few

as 32 samples per query point, the control variate approach pro-

duces a result very close to the reference while simply importance

sampling the vorticity field leads to large deviations in the smoke

motion due to the extensive noise in the estimated velocity field.

Parameter settings. To better understand the impact of the pa-

rameters of our solver on simulation output and performance, we

illustrate the effects of the various parameters in Figure 9. The first

column is a reference simulation using our method with reason-

able high-quality parameter settings: a uniform cache resolution of

512× 512, importance sampling based on the vorticity field, bilinear

interpolation, Δ𝑡 = 0.05 seconds, 𝑛mc = 1024 samples, and 𝜈 = 0.

All other columns modify a single parameter in a manner that pur-
posefully degrades simulation quality. The results thus show how

changing each parameter can degrade the solution.

Due to MC’s stochastic nature, nearest neighbor interpolation

produces noisier (i.e., higher variance) results that compound over

time. Since bilinear interpolation yields smoother results and is

nearly free on, e.g., modern GPU architectures, it is the obvious

choice. We also compare two non-trivial MC importance sampling

functions to reduce the variance of the estimator and, as expected,

importance sampling from the vorticity field yields sharper and

more accurate results than sampling according to the Biot-Savart

kernel (see Section 4.4) since the latter decreases slowly and omits

information of the current simulation state. The discrepancy here is

particularly strong when the vorticity is sparsely distributed across

the domain. While our advection scheme is unconditionally stable,

using time steps that are too large or a cache resolution that is

too low results in inevitable loss of detail in high variation regions.

Finally, since standard MC error decreases at a rate of O(1/√𝑛mc),
the number of samples required for high quality results can be high;

when we reduce the sample count by a factor of four, we note a

significant loss of details.

6 DISCUSSION AND FUTURE DIRECTIONS
Our work is the first step towards a new family of fluid solvers based

on Monte Carlo methods. We demonstrated the potential of our MC-

based fluid solvers to generate high quality and accurate results, but

there remains much to be explored; a better understanding on how

we can best exploit the unique properties, and new trade-offs of noise

and computation time within fluid animation to name a few general

directions. Echoing Sawhney and Crane [2020], open directions

include geometric robustness and flexibility, parallelism, adaptivity

and output sensitivity, reduced (or eliminated) dependence on mesh

discretization, and further reduction of variance. Below we discuss

limitations and propose avenues of future work.

Control variate. The control variate we used in Eq. 23 is not the

general formula for control variates. The general form uses a mix-

ture between the estimator and control function with a control

parameters. It would be interesting to study how one could intro-

duce an optimal control parameter in our setting to further reduce

the estimator variance.

Bias. Currently, our method has two sources of bias – the first

one coming from the cache interpolation error and the other from

the semi-Lagrangian advection – resulting in energy loss as time

advances. The first source, e.g. the cache interpolation bias, is not

inherent to our fundamental formulation. One way this could be

resolved, without exponential cost, is through the use of a shared

particle cache (and sampled locations for MC integration) if one

allows recursion to go back to the initial conditions. However, the

second source, e.g. the advection bias, is intrinsic to our advection

process and solving this issue remains an open question. It comes

from the fact that the nonlinearity of our advection scheme (3)

does not commute with the MC estimator, much like how naive

transmittance estimation through ray marching is bias [Novák et al.

2018]. Further down the road, it would be interesting to explore

whether the work of Misso et al. [2022] can be used in our context

to generate an unbiased estimator.

Semi-Lagrangian dissipation. For tracing semi-Lagrangian tra-

jectories, we used either forward Euler or RK4, and as expected

observed somewhat improved results from the latter option. The

dissipation that remains comes from interpolating from the cache,

similar to grid-based methods; using higher order interpolation

therefore ought to result in less dissipation. It would be interesting

to look at incorporating more advanced advection or time-splitting

schemes, such as MacCormack, BDF2, advection-reflection , IVOCK,

etc., to further lower the dissipation.

Boundary conditions. Investigating a broader set of boundary con-
ditions, such as no-slip – the main source of vorticity in viscous

flows – andmixed boundaries is another interesting direction.While

some approaches exist [Maire and Tanre 2013; Simonov 2017], effec-

tively handling Neumann and mixed boundaries in WoS is still an

open problem, as discussed, for example, by Sawhney et al. [2022].

In general, our free-slip boundary condition framework is only

effective for a single closed and connected boundary; otherwise, one

needs to know the difference in stream function isovalues between

the separate boundaries. Similarly, a 3D vector potential is further

complicated by its nontrivial null spaces; however, successfully gen-

eralizing to multiple disjoint objects could benefit from MC’s ability

to handle far more complex geometry, as explored by Sawhney

and Crane [2020]. Exploring applications of the Kelvin transform

[Nabizadeh et al. 2021] in an MC fluid context would enable efficient

simulations on infinite domains, with or without obstacles.
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Fig. 16. Fluid simulation results using a uniform cache (left) and an adaptive
cache (middle) using one-twentieth memory footprint that of the uniform
one. Slowly varying regions are sparsely cached while dense sampling occurs
in regions exhibiting steep or discontinuous variations.

Besides inflow/outflow boundaries, we assume no external forcing

or sourcing, but a generalization of the Feynman-Kac theorem can

be used to incorporate these effects [Busnello et al. 2005]. Extensions

to liquids are more challenging, as they require new free surface

boundary conditions [Lundgren and Koumoutsakos 1999] and a

deforming surface representation.

Advanced caching methods. We have presented how adopting a

uniform grid cache avoids exponential cost and makes the method

feasible in practice. However, our framework is not limited to a

uniform grid and we can consider several different alternatives,

each with associated tradeoffs. We believe that adaptive caching

methods or a data structure similar to particle-based/hybridmethods

could all be viable alternatives. A detailed study is beyond the scope

of our initial exploration of MC for fluid animation. Nevertheless,

we comment on two possible alternative implementations with

preliminary examples.

The first alternative is an adaptive grid cache, replacing the uni-

form grid with an adaptive tree structure to exploit sparsity. Due to

our method’s pointwise estimate feature, we can reduce the storage

cost for caching without affecting the MC estimator itself; other

methods typically require modifications to their numerical algo-

rithms such as discrete gradient computation, for example. Figure 16

illustrates our adaptive cache prototype result. It exhibits a large

reduction in memory, although this prototype does not yet offer a

significant speed gain.

Another exciting alternative uses a set of scattered (unstructured)

cache points. Such points could be formed from Lagrangian parti-

cles, e.g. particles advected along the simulation, Eulerian, e.g. that

are not advected, or even both. Lagrangian point caches can be

constructed by importance sampling the particles with respect to

the initial vorticity strength, ensuring that particles are distributed

proportionally to the vorticity field at all time. Using this type of

cache makes our MC approach applicable also to a particle-based
solver, albeit based on an entirely different mathematical framework

than the existing particle-based solvers. Figure 17 shows that this

method gives a consistent result with our grid cache-based method.

Caches are also used in rendering to accelerate the computation

of multiple bounces of light [Jarosz et al. 2008; Krivánek et al. 2005;

Ward et al. 1988]. Since our equations have a similar structure as a

recursive equation in rendering, more careful allocation of cache

points and reconstruction in our problem can also be beneficial.

Those prior work in rendering, however, would not be directly

applicable to our method since fluid dynamics and light transport

have different characteristics in terms of estimation errors (e.g., the

split-sphere model in radiance caching [Ward et al. 1988] has no

clear role in our framework).

Alternatives to caching. Our cache-based implementation, and any

alternative caching methods discussed in the previous subsection,

result in additional bias beyond that introduced by time discretiza-

tion. This issue motivates a desire to explore and devise alternative

solutions for resolving the exponential cost of our base recursive

formulation. This exponential cost, in its essence, is similar to the

problem of having an exponential cost in path tracing [Kajiya 1986]

if we were to split a path at each bounce (i.e., exponential to the

number of bounces). Path tracing avoids this exponential growth

by tracing along only one direction per bounce. While we have

empirically found that this approach is not applicable in our setting,

some further study of MC methods may avoid this exponential cost.

Quantum methods for numerical integration [Shimada and

Hachisuka 2020] may be one potential avenue due to the expo-

nential nature of computation via quantum bits. Russian roulette

[Arvo and Kirk 1990], an unbiased method to terminate recursive

MC processes according to their expected contribution, can be ap-

plied to “early-out” fluid trajectories that contribute negligibly to

the final dynamics. Similarly, path (resp. trajectory) splitting [Vorba

and Křivánek 2016] can be used to adaptively refine our sampling.

Variance reduction. While the control variate approach we pre-

sented for the Biot-Savart case is quite effective, we have only begun

to explore the broader landscape of variance reduction methods in

MC. Designing an efficient sampling strategy in WoS would be cru-

cial to make the method more practical in the presence of solid

boundaries. Compared to the Biot-Savart case, the design space to

explore for effective importance functions for WoS is even more

flexible. For the boundary integration in WoS, it would be inter-

esting to investigate how directional importance functions, such

as the von-Mises Fisher or circular Cauchy distributions [Fisher

1995], could be leveraged. Drawing inspiration from the field of

light transport, we can employ multiple importance sampling to

combine several potentially good PDFs into more robust and sam-

ple efficient strategies. Reusing the sample WoS paths within each

iteration or even over consecutive time steps similarly to ReSTIR

[Bitterli et al. 2020] could also be an interesting direction. Since

our approach is based on MC, it is compatible to Markov chain MC

methods [Brooks 1998] and significant variance reduction akin to

Metropolis light transport [Veach and Guibas 1997] might be possi-

ble in our MC fluid solver. A concurrent work on the bidirectional

WoS method [Qi et al. 2022] could be combined with our method.

Tighter coupling with rendering. Perhaps most excitingly, the sim-

ilarities of our method to MC-based light transport simulations

suggest that a tighter integration between fluid and light transport

simulations may prove fruitful. For example, since our fluid simu-

lation generates errors that manifest as noise, and since possibly

Fig. 17. An alternative implementation with Lagrangian particle cache
(right) yields results consistent with our baseline uniform grid (left).
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only a subset of the domain is rendered from any individual camera

setting, one may be able to adapt the simulation sampling rate to

account for the precision needed by the rendering algorithm. Last-

mile denoisers of rendered images [Chaitanya et al. 2017; Kalantari

et al. 2015], further diversify this design space and trade-offs therein.

For example, one might be able to design a denoiser which removes

noise from both rendering and simulation (via our method) in a

coupled manner.

Relatedly, heterogeneous volumetric rendering algorithms

[Novák et al. 2018] build acceleration structures and variance reduc-

tion techniques to accelerate their convergence, and these structures

can inform (and be informed) by MC estimates of the underlying

fluid dynamics. For example, one could imagine a hybrid approach in

which a coarse grid-based simulation is used to guide the rendering

process and high resolution local resimulations are performed on the

fly using our approach when the renderer requires higher-resolution

fluid density data.

7 CONCLUSION
Motivated by the success of Monte Carlo methods in light trans-

port and their more recent introduction to geometry processing,

we proposed a Monte Carlo framework to solve for fluid motion.

Our solver generates stochastic pointwise solutions to the incom-

pressible Navier-Stokes equations and is based on the Feynman-Kac

formula applied to the vorticity transport equation of fluid flow. We

developed a simple and parallelizable implementation, leveraging a

cache to counter the exponential cost of a naive treatment of our

recursive estimator formulation. We further extended our method

to treat boundary conditions for free-slip moving solids, inflows,

and outflows, using a stream function formulation and the Walk-on-

Spheres algorithm to treat the associated Poisson problem, which

enables simulations with complex boundary shapes with minimal

effort. We applied three variance reduction techniques – antithetic

sampling, importance sampling, and control variate – to the Monte

Carlo estimators to accelerate the computation. We demonstrated

the practical feasibility of this new perspective, providing a realiza-

tion of our framework that is novel, easy to implement, and effective.

As the first such numerical solver, and a major departure from stan-

dard approaches, our work highlights the unique properties, current

limitations, and exciting future directions of MC fluid animation.
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